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Abstract

We consider the elliptic problems ∆u = a(x)um, m > 1, and ∆u = a(x)eu in a
smooth bounded domain Ω, with the boundary condition u = +∞ on ∂Ω. The weight
function a(x) is assumed to be Hölder continuous, growing like a negative power of
d(x) = dist(x, ∂Ω) near ∂Ω. We show existence and nonexistence results, uniqueness
and asymptotic estimates near the boundary for both the solutions and their normal
derivatives.

1. Introduction

Elliptic problems with blow-up on the boundary have been intensively studied in the past
few years. One usually looks for a function u ∈ C2(Ω) solving an elliptic equation in a
smooth bounded domain Ω ⊂ RN and such that u(x) → +∞ as d(x) := dist(x, ∂Ω) → 0+.

In this paper we study the problems corresponding to nonlinearities of power and of
exponential type. More precisely,{

∆u = a(x)um in Ω
u = +∞ on ∂Ω

(P )

and {
∆v = a(x)ev in Ω
v = +∞ on ∂Ω,

(P ′)
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where a(x) is a weight function.
Problem (P ) was studied for the first time in [23], with a ≡ 1 and p = (N + 2)/(N − 2).

Later, in [20], [2], [3] and [27], the case with a(x) smooth and positive up to the boundary
and, in [14], the case where a is smooth but vanishes on the boundary were considered. The
extension to p-Laplacian equations is studied in [9]. In all these papers, uniqueness is shown
by means of an estimate of the form u ∼ Cd−α as d → 0+. We also quote [19], where
uniqueness with a ≡ 1 is obtained without exact estimates for solutions on the boundary.

As for problem (P ′), it was considered for the first time in [5] (a ≡ 1), and later in [21] (a
smooth and positive up to ∂Ω) and [1] (a ≡ 1). In [21] and [1], uniqueness and asymptotic
estimates near the boundary were also provided.

More recently, some results have appeared which treat the situation where the weight
a is possibly unbounded near ∂Ω. In [25], the radial case was considered for more general
operators than the Laplacian, but obtaining only existence and nonexistence results. For
problem (P ) (including the range 0 < m ≤ 1), the radial case was completely discussed in
[6]; the authors obtained existence, nonexistence, uniqueness, multiplicity and estimates for
all positive solutions. Finally, in [28] and [13], the existence of solutions in smooth bounded
domains of RN was shown for both problems (P ) and (P ′) (actually [13] admits more general
power-like and exponential-like nonlinearities without monotonicity assumptions).

We mention in passing other relevant papers where related problems were considered, for
instance [4], [8], [12], [18], [19], [22], [24] and [26] (see also [7], [10], [11], [15], [16] for elliptic
systems).

Our goal here is to provide a complete picture of the set of solutions to problems (P )
and (P ′) when the weight a(x) is singular on ∂Ω. We show existence, nonexistence, unique-
ness and estimates near the boundary for solutions and their normal derivatives in smooth
bounded domains of RN . Techniques based on sub and supersolutions were used in [8], [14]
and [16] . We will proceed in a different manner, which in particular will give us information
about the growth of the normal derivatives of the solutions. For the sake of completeness
we also prove existence, although by a different method than that in [28] and [13].

We will assume that Ω is a C2,µ bounded domain for some 0 < µ < 1, and that the
weight a(x) is a locally µ–Hölder continuous function which verifies

C1d(x)−γ ≤ a(x) ≤ C2d(x)−γ, x ∈ Ω (A)

for some positive constants γ, C1, C2. Under these assumptions, we will show that problems
(P ) and (P ′) only admit solutions when 0 < γ < 2, in which case they are unique and satisfy
bounds in terms of the data. For certain estimates near the boundary, we will sometimes
need to assume the stronger condition:{

there exists a bounded and positive function C0 defined on ∂Ω
such that limx→x0 d(x)γa(x) = C0(x0) for every x0 ∈ ∂Ω.

(A′)

We will see that this implies estimates of the growth of both the solutions and their normal
derivatives near ∂Ω. Note that problem (P ) only makes sense for positive solutions (unless
we define um in a suitable way for negative values of u), while the solutions in (P ′) may
change sign. Our results are the following.
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Theorem 1. Assume a ∈ Cµ(Ω) verifies hypotheses (A). Then problem (P) has no positive
solutions if γ ≥ 2, and it has a unique positive solution u ∈ C2,µ(Ω) when 0 < γ < 2.
Moreover,

(D1 sup
Ω

d(x)γa(x))−
1

m−1 d(x)−α ≤ u(x) ≤ (D2 inf
Ω

d(x)γa(x))−
1

m−1 d(x)−α in Ω, (1)

where α = (2− γ)/(m− 1), and D1, D2 are positive constants depending only on α and Ω.
If in addition a verifies condition (A′), then

lim
x→x0

d(x)αu(x) =

(
α(α + 1)

C0(x0)

) 1
m−1

, lim
x→x0

d(x)α+1∇u(x)ν(x0) = α

(
α(α + 1)

C0(x0)

) 1
m−1

,

lim
x→x0

d(x)α+2Hess u(x)[ν(x0), ν(x0)] = α(α + 1)

(
α(α + 1)

C0(x0)

) 1
m−1

,

(2)

for every x0 ∈ ∂Ω, where Hess u denotes the Hessian of u and ν stands for the exterior unit
normal to ∂Ω.

Theorem 2. Assume a ∈ Cµ(Ω) verifies hypotheses (A). Then problem (P ′) has no solutions
if γ ≥ 2, and it has a unique solution v ∈ C2,µ(Ω) when 0 < γ < 2. Moreover,

D′
1(2−γ)(sup

Ω
d(x)γa(x))−1d(x)γ−2 ≤ ev(x) ≤ D′

2(2−γ)(inf
Ω

d(x)γa(x))−1d(x)γ−2 in Ω, (3)

where D′
1, D′

2 are positive constants depending only on Ω. If in addition a verifies the
asymptotic condition (A′), then

lim
x→x0

(v(x) + (2− γ) log d(x)) = log

(
2− γ

C0(x0)

)
, lim

x→x0

d(x)∇v(x)ν(x0) = (2− γ) ,

lim
x→x0

d(x)2Hess u(x)[ν(x0), ν(x0)] = (2− γ)

(4)

for every x0 ∈ ∂Ω, where ν stands for the exterior unit normal to ∂Ω.

Remarks 1. a)Existence of solutions holds under the weaker assumption 0 < a(x) ≤ C2d(x)−γ

in Ω, for some 0 < γ < 2, C2 > 0.

b) Estimate (3) implies the weaker estimate

lim
x→x0

v(x)

− log d(x)
= 2− γ (5)

for every x0 ∈ ∂Ω. Condition (A′) is not needed for (5) to hold.

c) As a byproduct of the proof of estimates (2) and (4) (see Section 4) it follows that the
tangential derivatives of the solutions grow at a lower rate than the normal derivatives.

d) If the weight a(x) is more regular, say a ∈ Ck,µ(Ω) and Ω is Ck+2,µ, for some k ∈ N, then
we can establish estimates similar to (2) and (4) for the derivatives up to order k + 2 in the
direction of the normal.

The paper is organized as follows: Section 2 is devoted to the existence of solutions to
problems (P ) and (P ′). In Section 3 we obtain estimates (1) and (3) which, in particular,
imply uniqueness and nonexistence when γ ≥ 2 . Finally, Section 4 deals with the proof of
the estimates (2) and (4). Theorems 1 and 2 will then follow.
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2. Existence of solutions

Existence of solutions of problems (P ) and (P ′) is already known from [28] and [13] when
0 < γ < 2. We give here a different proof based on a standard technique. We construct
solutions with finite datum n ∈ N and then obtain the desired solution by passing to the
limit as n → +∞. The key step in this process is to show local uniform bounds.

Lemma 3. Let n ∈ N, and assume a ∈ Cµ(Ω) verifies (A) with 0 < γ < 2. Then the
problem {

∆u = a(x)um in Ω
u = n on ∂Ω

(Pn)

admits a unique positive solution un ∈ C2,µ(Ω) ∩ C(Ω). Moreover, un is increasing in n.

Proof. Choose a cut-off function ϕ ∈ C1(R+) such that 0 ≤ ϕ ≤ 1, ϕ(t) = 0 if 0 ≤ t ≤ 1,
ϕ(t) = 1 for t ≥ 2, and for k ∈ N set ak(x) = a(x)ϕ(kd(x)). Then ak ∈ Cµ(Ω) (we recall
that d(x) is always Lipschitz-continuous). Consider the problem{

∆w = ak(x)(w + n)m in Ω
w = 0 on ∂Ω .

(6)

Since we can take w = −n, w̄ = 0 as ordered sub and supersolutions, respectively, the
existence of at least a solution wn

k ∈ C2,µ(Ω) is established. By the monotonicity of the
right-hand side and the maximum principle it follows that wn

k is unique.
In order to pass to the limit as k → +∞ in (6)we need the following lemma which appears

in [17] (see Lemma 4.9 and Problem 4.6).

Lemma 4. Let Ω be a C2 bounded domain of RN and f ∈ Cµ(Ω) such that supΩ d(x)γ|f(x)| <
+∞ for some 1 < γ < 2. Then the problem ∆u = f in Ω with u = 0 on ∂Ω has a unique
solution u ∈ C2,µ(Ω) ∩ C(Ω), and

sup
Ω

d(x)γ−2|u(x)| ≤ C sup
Ω

d(x)γ|f(x)|,

where C is a positive constant depending only on Ω and γ.

Remark 2. Notice that if supΩ d(x)γ|f(x)| < +∞, we also have supΩ d(x)γ′|f(x)| < +∞ for
every γ′ > γ. In particular, when 0 < γ ≤ 1, Lemma 4 is still applicable by choosing some
γ′ such that 1 < γ′ < 2, but the estimate we obtain now is |u(x)| ≤ Cd(x)2−γ′ , x ∈ Ω, which
is not the optimal one.

We now apply this lemma to the problem (6). Since 0 ≤ ak(x) ≤ a(x) ≤ C2d(x)−γ, and
wn

k are uniformly bounded independently of k, we have

sup
Ω

d(x)γ−2|wn
k (x)| ≤ C (7)

for some constant C not depending on k (this holds true in the whole range 0 < γ < 2,
cf. Remark 2). The uniform bounds for the sequence {wn

k} and a standard bootstrapping
argument give local C2,µ bounds, so that by means of a diagonal procedure we can obtain
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a convergent subsequence wn
k → wn in C2

loc(Ω) as k → +∞. Passing to the limit in (6) we
obtain that ∆wn = a(x)(wn + n)m in Ω, and supΩ d(x)γ−2|wn(x)| ≤ C thanks to (7). Since
0 < γ < 2, this implies wn ∈ C(Ω) and wn = 0 on ∂Ω. The function un = wn + n is then
the required solution to (Pn) (notice that un is positive, since −n < wn < 0). By elliptic
regularity, un ∈ C2,µ(Ω). Uniqueness and monotonicity with respect to n are a consequence
of the maximum principle. �

The following lemma is the equivalent to Lemma 3 for f(u) = eu. We omit the proof,
which is essentially the same. The only point worth stressing is that we can find a subsolution
to the truncated problem of the form w = A(|x|2 − B) for sufficiently large A and B, and
that uniform bounds for ewk

n are enough to pass to the limit via Lemma 4.

Lemma 5. Let n ∈ N, and assume a ∈ Cµ(Ω) verifies (A) with 0 < γ < 2. Then the
problem {

∆v = a(x)ev in Ω
v = n on ∂Ω

(P ′
n)

admits a unique solution vn ∈ C2,µ(Ω) ∩ C(Ω). Moreover, vn is increasing in n.

We finally prove that the sequences {un} and {vn} constructed above converge, as n →
+∞, to solutions of problems (P ) and (P ′), respectively.

Lemma 6. Let {un}, {vn} be the sequences of solutions to problems (Pn) and (P ′
n) given

by Lemma 3 and Lemma 5, respectively. Then un → u in C2
loc(Ω), where u ∈ C2,µ(Ω) is a

positive solution to (P ) and vn → v in C2
loc(Ω), where v ∈ C2,µ(Ω) is a solution to (P ′).

Proof. Since a is strictly positive in Ω, there exists a0 > 0 such that a ≥ a0. Then un verifies
∆un ≥ a0u

m
n in Ω, and the maximum principle implies un ≤ U , where U is the unique

solution to problem (P ) with a(x) ≡ a0 (cf. [3]). This gives local uniform bounds for un,
and an argument similar to the used in the proof of Lemma 3 gives that un → u in C2

loc(Ω)
for some function u. Passing to the limit in (Pn) we see that ∆u = a(x)um, and since un is
increasing it also follows that u = +∞ on ∂Ω. Finally, by elliptic regularity, u ∈ C2,µ

loc (Ω),
and is a classical solution to (P ). The proof for the sequence {vn} is similar. �

3. Global estimates and uniqueness

This section is devoted to prove the global estimates (1) and (3), the nonexistence result for
γ ≥ 2 and the uniqueness of solutions to problems (P ) and (P ′).

Theorem 7. Assume a ∈ Cµ(Ω) verifies hypothesis (A). Then there exist positive constants
D1, D2 depending only on α and Ω, such that

(D1 sup
Ω

d(x)γa(x))−
1

m−1 d(x)−α ≤ u(x) ≤ (D2 inf
Ω

d(x)γa(x))−
1

m−1 d(x)−α in Ω, (1)

for every positive solution u to (P ).
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Proof. Let u be a positive solution to (P ). We show first that infΩ d(x)αu(x) > 0,
supΩ d(x)αu(x) < +∞.

Consider an arbitrary sequence {xn} ⊂ Ω such that dn := d(xn) → 0. In the ball of
center xn and radius dn/2 we have ∆u ≥ C1(3/2)−γd−γ

n um. Setting

un(x) =

(
2γ−2C1

3γ

) 1
m−1

dα
n u(xn +

dn

2
x), x ∈ B(0, 1) ,

we obtain ∆un ≥ um
n in B(0, 1). By the maximum principle, un(x) ≤ U(x), x ∈ B(0, 1),

where U stands for the unique positive solution to ∆U = Um in B(0, 1), U|∂B(0,1) = +∞.
For x = 0 we obtain

dα
nu(xn) ≤

(
3γ

2γ−2C1

) 1
m−1

U(0) .

Since the sequence {xn} is arbitrary, this shows that supΩ d(x)αu(x) < +∞.
To prove the lower bound, we let v = u−p with 0 < p < m− 1 to be chosen. Then

−∆v +
p + 1

p

|∇v|2

v
= p a(x)v−r ,

where r = (m− 1− p)/p > 0. It follows that −∆v ≤ Cd(x)−2+pα in Ω (C will always denote
a positive constant). We now choose p small enough so that 1 < 2 − pα < 2. Let φ be the
unique solution to the problem −∆φ = Cd(x)−2+pα, φ|∂Ω = 0, which exists due to Lemma 4.
By the maximum principle and Lemma 4, v ≤ φ ≤ Cd(x)pα, that is u(x) ≥ Cd(x)−α in Ω.

We finally prove (1). Set p = 1 + 2/α, and let λ > 0 to be determined later. Since
m− p < 0, we have

∆(λu) = λ1−pd(x)γa(x)(d(x)αu(x))m−p(λu)p

≥ λ1−p infΩ d(x)γa(x)(supΩ d(x)αu(x))m−p(λu)p

= (λu)p in Ω,

if λ = ((infΩ d(x)γa(x))(supΩ d(x)αu(x))m−p)
1

p−1 (compare with [13]). Hence λu is a subsolu-
tion to the problem ∆U = Up in Ω, U|∂Ω = +∞, which has a unique solution U . Since MU
is a supersolution and λu ≤ MU in Ω for large M (observe that U ∼ Cd−α near ∂Ω, so that
the inequality can be achieved), the method of sub and supersolutions (cf. Lemma 4 in [14]
and Lemma 2 in [13]) yields λu ≤ U . Note that the maximum principle could not be used
directly, since we do not know a priori the relation between λu and U near the boundary.
A little algebra now shows that this leads indeed to the upper estimate in (1). The lower
estimate is proved in a similar way. �

The following theorem is the analogue of Theorem 7 in the exponential case. The proof
is essentially the same and will be omitted.

Theorem 8. Assume a ∈ Cµ(Ω) verifies hypothesis (A). Then there exist positive constants
D′

1, D′
2 depending only on α and Ω, such that

D′
1(2−γ)(sup

Ω
d(x)γa(x))−1d(x)γ−2 ≤ ev(x) ≤ D′

2(2−γ)(inf
Ω

d(x)γa(x))−1d(x)γ−2 in Ω, (3)

for every solution v to (P ′).
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For γ ≥ 2 the estimates (1) and (3) imply that all solutions are bounded in Ω. We thus
have the following corollary. See Lemma 5.1 in [16] for a related result.

Corollary 9. Assume a ∈ Cµ(Ω) verifies hypothesis (A) and γ ≥ 2. Then problems (P )
and (P ′) have no solutions.

We now study the uniqueness of solutions of problems (P ) and (P ′). Observe that (1)
and (3) are not enough to conclude that the quotients of two positive solutions to (P ) tend
to 1 at ∂Ω, which has been often used to prove uniqueness. Instead we adapt the argument
in Theorem 3.4 of [19].

Theorem 10. Assume a ∈ Cµ(Ω) verifies (A) and 0 < γ < 2. Then problem (P ) has a
unique positive solution.

Proof. Let u, v be positive solutions to (P ), and assume there exist x0 ∈ Ω and k > 1 such
that u(x0) > kv(x0). Let Ω0 := {u > kv} ∩Br(x0), where r = d(x0)/2. By (1) we have

∆(u− kv) > a(x)(km−1 − 1)kvm ≥ κ1r
−α−2k

in Ω0, where κ1 is some positive constant. Set w(x) = (κ1r
−α−2k)(r2 − |x− x0|2)/2N . Then

∆(u − kv + w) ≥ 0 in Ω0, and from the maximum principle we deduce the existence of
x1 ∈ ∂Ω0 such that

u(x0)− kv(x0) + w(x0) ≤ u(x1)− kv(x1) + w(x1) .

It is easy to see that x1 ∈ ∂Br(x0). Then we obtain that (κ1r
−αk)/2N ≤ u(x1) − kv(x1),

which together with the upper estimate for v, leads to the existence of κ2 > 0 such that
u(x1) > (1 + κ2)kv(x1). Proceeding inductively, we find a sequence {xn} ⊂ Ω such that
u(xn) > (1 + κ2)

nkv(xn), which contradicts the fact that the quotients of any two positive
solutions must be bounded. Hence, u ≤ v, and interchanging the roles of u and v we obtain
u ≡ v. This proves the theorem. �

Theorem 11. Assume a ∈ Cµ(Ω) verifies (A) and 0 < γ < 2. Then problem (P ′) has a
unique solution.

Proof. The argument is similar to the one used in Theorem 10. Let u, v be solutions to (P ′)
and notice that (3) implies that u − v is bounded. Assume there exist x0 ∈ Ω and k > 0
such that u > v + k. Define Ω0 := {u > v + k} ∩Br(x0), for r = d(x0)/2. Then

∆(u− v − k) > a(x)ev(ek − 1) ≥ κ1r
−2

in Ω0. Setting w(x) = (κ1r
−2)(r2 − |x − x0|2)/2N , we obtain as before the existence of

x1 ∈ ∂Br(x0) such that w(x0) < u(x1)−v(x1)−k. In particular, u(x1) > v(x1)+k +κ1/2N .
Iterating this procedure, we obtain a sequence {xn} ⊂ Ω such that u(xn) > v(xn) + k +
nκ2/2N , which contradicts the boundedness of u − v. Thus, u ≤ v and similarly u ≥ v,
which proves uniqueness. �



Uniqueness and boundary behaviour of large solutions 8

Remarks 3. a) For problem (P ′), we can use a standard procedure to show uniqueness, since
the global estimate (3) shows that the quotient of two arbitrary solutions tends to one as
we approach the boundary of Ω (cf. Remarks 1 b)). Indeed, let u, v be solutions to (P ′).
By replacing u, v by u + 1, v + 1 and a(x) by a(x)e−1, we can assume that u, v ≥ 1. Let
w = u/v. Then

v∆w + 2∇v∇w = a(x)ev(e(w−1)v − w) in Ω.

Set Ω+ := {x ∈ Ω : w(x) > 1}, and assume Ω+ 6= ∅ (observe that w = 1 on ∂Ω, and
this implies w = 1 on ∂Ω+). Then since the function h(τ) = e(τ−1)v − τ is positive for
τ ≥ 1, we have v∆w + 2∇v∇w ≥ 0 in Ω+, and by the maximum principle w ≤ 1 in Ω+, a
contradiction. Thus Ω+ = ∅, i.e. w ≤ 1 in Ω, and the symmetric argument gives w ≡ 1,
which shows uniqueness.

b) The proof of Theorems 10 and 11 is also valid for unbounded domains, as long as we
have estimates like (1) and (3) for all solutions (this will be used in Section 4).

4. Estimates near the boundary

In this final section, we are obtaining estimates near the boundary both for solutions to (P )
and (P ′) and their normal derivatives. Our proof is based on a rescaling argument. We will
assume that a ∈ Cµ(Ω) verifies hypotheses (A) for 0 < γ < 2 and (A′).

We are performing all the calculations for problem (P ), since the translation of the
argument to problem (P ′) is straightforward.

Proof of estimates (2). Let x0 ∈ ∂Ω, and {xn} ⊂ Ω such that xn → x0. Choose an open
neighbourhood U of x0 so that ∂Ω admits C2,µ local coordinates ξ : U → RN , and x ∈ U ∩Ω
if and only if ξ1(x) > 0 (ξ = (ξ1, ξ2, . . . , ξN)). We can moreover assume ξ(x0) = 0. If
u(x) = ū(ξ(x)), then we have the equation

N∑
i,j=1

aij(ξ)
∂2ū

∂ξi∂ξj

+
N∑

i=1

bi(ξ)
∂ū

∂ξi

= ā(ξ)ūm

in ξ(U ∩ Ω), where a(x) = ā(ξ(x)), aij, bi are (at least) Cµ, and aij(0) = δij. Denote by ηn

the projections onto ξ(U ∩ ∂Ω) of ξ(xn), and introduce the functions

un(y) = dα
n ū(ηn + dny) ,

where dn = d(ξ(xn)). Notice that ξ(xn) = ηn + dn(1, 0, . . . , 0). The function un satisfies the
equation

N∑
i,j=1

aij(ηn + dny)
∂un

∂ξi∂ξj

+ dn

N∑
i=1

bi(ηn + dny)
∂un

∂ξi

= dγ
nā(ηn + dny)um

n .

On the other hand, estimates (1) imply that, for y in compact subsets K of D := {y ∈
RN : y1 > 0}, there exists n0 = n0(K) such that Cy−α

1 ≤ un(y) ≤ C ′y−α
1 for n ≥ n0,

where C, C ′ are positive constants not depending on K. These estimates, together with the
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equation, a bootstrap argument and a diagonal procedure, allow us to obtain a subsequence
(still labelled by {un}) such that un → u0 in C2

loc(D). In particular, we obtain that{
∆u0 = C0(x0)y

−γ
1 um

0 in D

Cy−α
1 ≤ u0 ≤ C ′y−α

1 .

Thanks to Theorem 10 and Remarks 3 b), we see that this problem has a unique positive
solution, which can be checked to be

u0(y) =

(
α(α + 1)

C0(x0)

) 1
m−1

y−α
1 .

Thus, taking y = (1, 0, . . . , 0), we arrive at

dα
nu(xn) →

(
α(α + 1)

C0(x0)

) 1
m−1

, dα+1
n

∂u

∂ξ1

(xn) → −α

(
α(α + 1)

C0(x0)

) 1
m−1

,

dα+2
n

∂2u

∂ξ2
1

(xn) → α(α + 1)

(
α(α + 1)

C0(x0)

) 1
m−1

.

This proves (2), since the sequence {xn} is arbitrary.
Finally notice that if a(x) ∈ Ck,µ(Ω) and Ω is Ck+2,µ, for some k ∈ N (Remarks 1 d)),

we obtain un → u0 in Ck+2
loc (Ω), so we can establish estimates for the derivatives up to order

k + 2. �

Remark 4. In case the function C0(x0) is constant on ∂Ω, there is another way of producing
the first estimate in (2) for problem (P ). Indeed, setting Ωδ := {x ∈ Ω : d(x) < δ} for
positive small δ and p = 1 + 2/α, we have

∆(λu) ≤ λ1−p sup
Ωδ

(d(x)γa(x))(inf d(x)αu(x))m−p(λu)p

in Ωδ. Choosing λ = λ(δ) := (supΩδ
d(x)γa(x)(infΩδ

d(x)αu(x))m−p)
1

p−1 , we obtain ∆(λu) ≤
(λu)p in Ωδ. A similar calculation as in [8] shows then that for a suitable constant C > 0,
λu + Cδ−α ≥ U in Ωδ, where U stands for the unique positive solution to ∆U = Up in Ω,
U = +∞ on ∂Ω. After some manipulations, this leads to

lim inf
d→0

d(x)αu(x) ≥
(

α(α + 1)

C0

) 1
m−1

,

and a similar reasoning proves the other inequality.
As can be checked, this proof can not be adapted to nonconstant C0, since it is global in

nature, and does not provide any information on the growth of the normal derivatives.
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[13] J. Garćıa-Melián, A remark on the existence of positive large solutions via sub and
supersolutions, submitted for publication.
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